Article ID Journal Published Year Pages File Type
1461019 Ceramics International 2014 9 Pages PDF
Abstract

Porous magnesium oxide (MgO) structures were prepared by thermoplastic processing for use as supports in asymmetric thin film oxygen transport membranes (OTMs). The open porosity, pore size distribution, and resulting gas permeability of the MgO structures were measured for different feedstock compositions and sintering temperatures. For a composition with 19 vol% graphite as a pore-former, sintering temperatures of 1300 °C and 1400 °C, resulted in support porosities of 36% and 26%, respectively, and gas permeabilities of 1.4×10−16 m2 and 3.1×10−16 m2. Electron microscopy showed that the unexpected increase in gas permeability at temperatures above 1300 °C was a result of the growth of macro-pores and the opening of bottle-neck pores which resulted in improved pore connectivity. Mercury intrusion porosimetry experiments confirmed an increase in average pore size for samples sintered above 1300 °C, despite a significant decrease in total porosity.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,