Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1461336 | Ceramics International | 2014 | 8 Pages |
Fe-based materials, Fe2O3, Fe3O4, and FeOOH, were synthesized by the microwave–hydrothermal process in the temperature range of 100–200 °C and under very short reaction times of 15 min to 2 h. Under microwave-controlled hydrolysis and redox reactions, cube-like Fe2O3 was crystallized using FeCl3, Fe3O4 particles were crystallized from FeCl2 and FeOOH nanorods were crystallized using FeCl3. The Fe-based materials were fabricated to make anodes and cathodes of lithium-ion battery and supercapacitor electrode materials to study their potential electrochemical applications. The electrochemical results showed that FeOOH had better anode capacity as lithium-ion batteries than those of Fe2O3 and Fe3O4. The present results suggest that the microwave–hydrothermally synthesized Fe-based materials are promising lithium-ion battery anode materials.