Article ID Journal Published Year Pages File Type
1461363 Ceramics International 2014 6 Pages PDF
Abstract

Cubic Y2O3:Eu3+ nanoparticles with a size about 32 nm were synthesized using a facile hydrothermal method followed by an annealing process. As expected, the Y2O3:Eu3+ nanoparticles had a broad Eu–O excitation band ranging from 200 nm to 285 nm peaking at about 260 nm. The Y2O3:Eu3+ nanoparticles were then used to fabricate the inorganic–organic hybrid nanostructures with thenoyltrifluoroacetone (TTA). The Y2O3:Eu3+–TTA hybrid nanostructures exhibited a new strong excitation band ranging from 280 nm to 390 nm peaking at about 368 nm. This new excitation band was attributed to the energy transfer mechanism of the Y2O3:Eu3+–TTA hybrid system. It is interesting to note that this energy transfer mechanism had a close interaction with the Eu–O excitation of Y2O3:Eu3+ nanoparticles. The phase structures, chemical bonding information, microstructural characteristics and luminescence properties were investigated.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,