Article ID Journal Published Year Pages File Type
1461379 Ceramics International 2014 5 Pages PDF
Abstract

A series of novel red emitting phosphors Li6M(La1−xEux)2Nb2O12 (M=Ca, Sr, Ba; 0≤x≤0.3) were synthesized by solid state reaction, and their structures and photoluminescence properties were investigated in detail. The excitation spectrum of Li6M(La1−xEux)2Nb2O12 revealed two mainly excitation bands at 393 nm and 464 nm, which match well with the two popular emissions from near-UV and blue LED chips. Upon the 464 nm light excitation, Li6MLa2Nb2O12:Eu3+ phosphors exhibit a red emission centered at 608 nm, originated from the 5D0–7F2 transition of Eu3+ ions. The Eu3+ surrounding crystal lattice environment in the garnet-based host was changed by altering the c sites element with different radii alkaline earth Ba, Sr, and Ca. The evident photoluminescence enhancement was observed in Li6M(La1−xEux)2Nb2O12 phosphors with the decreasing of the c sites ionic radius. The emission intensity of the optimized Li6Ca(La0.8Eu0.2)2Nb2O12 (λexc=464 nm) phosphor is about two times higher than that of Y2O3:Eu3+ (λexc=467 nm) under blue light excitation. In addition, the quenching mechanism and the relationship between the structure and photoluminescence property were also discussed.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,