Article ID Journal Published Year Pages File Type
1461399 Ceramics International 2014 8 Pages PDF
Abstract

In order to improve the corrosion resistance and the surface bioactivity of biodegradable magnesium alloys, a nanostructured akermanite (Ca2MgSi2O7) coating was grown on AZ91 magnesium alloy through electrophoretic deposition (EPD) assisted with micro arc oxidation (MAO) method. The crystalline structures, morphologies and compositions of samples were characterized by X–ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The in vitro bio–corrosion (biodegradability) and bioactivity behaviors of samples were investigated by electrochemical and immersion tests. The experimental results indicated that the nanostructured akermanite coating could slow down the corrosion rate and improve the in vitro bioactivity of biodegradable magnesium alloy. Thus, magnesium alloy coated with nanostructured akermanite may be a promising candidate to be used as biodegradable bone implants.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , ,