Article ID Journal Published Year Pages File Type
1461553 Ceramics International 2014 9 Pages PDF
Abstract

The authors report a facile chemical precipitation method for the fabrication of a highly ordered mesoporous Mn2O3/MCM-41 composite. Examination of the acquired samples using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption–desorption measurement has provided fundamental insight into the structure and properties of the Mn2O3/MCM-41 composite. It is found that the as-prepared Mn2O3/MCM-41 composite has a highly ordered mesoporous structure with a specific surface area of 793 m2 g−1. The performance of Mn2O3/MCM-41 composite as a remover was further demonstrated in the removal of azo dyes of methyl orange (MO), Congo red (CR), methylene blue (MB), and rhodamine B (RB) with/without visible light irradiation at room temperature. The results show that the Mn2O3/MCM-41 composite has an excellent removal performance for MB and RB, making it a promising candidate for wastewater treatment.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , ,