Article ID Journal Published Year Pages File Type
1461597 Ceramics International 2014 6 Pages PDF
Abstract

Olivine structured LiFePO4/C cathode was synthesized via a freeze-drying route and followed by microwave heating with two kinds of carbon sources: PEG-4000 (organic) and Super p (inorganic). XRD patterns indicate that the as-prepared sample has an olivine structure and carbon modification does not affect the structure of the sample. Image of SEM shows a uniform and optimized particles size, which greatly improves the electrochemical properties. TEM result reveals the amorphous carbon around the surface of the particles. At a low rate of 0.1 C, the LiFePO4/C sample presents a high discharge capacity of 157.8 mAh g−1 which is near the theoretical capacity (170 mAh g−1), and it still attains to 149.1 mAh g−1 after 200 cycles. It also exhibits an excellent rate capacity with high discharge capacities of 143.2 mAh g−1, 137.5 mAh g−1, 123.7 mAh g−1 and 101.6 mAh g−1 at 0.5 C, 1.0 C, 2.0 C and 5.0 C, respectively. EIS results indicate that the charge transfer resistance of LiFePO4 decreases greatly after carbon coating.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,