Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1461717 | Ceramics International | 2013 | 7 Pages |
A ceramic ternary system of (1−x−y)Pb(Lu1/2Nb1/2)O3–xPbZrO3–yPbTiO3 (PLuN–PZ–PT) has been prepared by two-step synthetic process and characterized by X-ray powder diffraction and electric measurements. A morphotropic phase boundary (MPB) region has been delimited in the ternary system at room temperature. With the PLuN content increasing, the morphotropic phase boundary region becomes broad as well as the dielectric peak. The best comprehensive piezoelectric properties were achieved at MPB composition 0.42PLuN–0.1PZ–0.48PT, with the piezoelectric coefficients d33, the Curie temperature Tc, the planar electromechanical coupling factor Kp, and the remnant polarizations Pr being 367 pC/N, 360 °С, 68% and 35 μС/cm2, respectively. The results indicate that the PLuN–PZ–PT ternary ferroelectric material may be a promising candidate for high-power electromechanical transducers that can operate in a large temperature range.