Article ID Journal Published Year Pages File Type
1462025 Ceramics International 2012 4 Pages PDF
Abstract

The barium titanate–molybdenum composites were prepared through solid state reaction method in argon atmosphere. The microstructure, resistivity, and dielectric properties of the composites were investigated. XRD results indicated that chemical reactions between barium titanate (BaTiO3:BT) and molybdenum (Mo) have taken place during sintering, resulting in the formation of BaMoO4 (BM) and BaTi2O5 (BT2). The resistivity decreased with the increasing amount of Mo in the composites. The composites (when x = 5 and 20 wt.%) showed lower dielectric constant than pure BaTiO3, especially, the dielectric constant (when x = 20 wt.%) reached a minimum value (<104), while composites (when x = 10 and 15 wt.%) showed rather high dielectric constant at temperatures range from 25 °C to 160 °C. The dielectric constant of the composite gradually decreased with increase in frequency at the room temperature. The dielectric constant of composite (when x = 5 wt.%) comes up to 104, and the Tc (Curie temperature) of the composite was relatively higher than that of BT (120 °C).

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,