Article ID Journal Published Year Pages File Type
1462246 Ceramics International 2014 9 Pages PDF
Abstract

Effect of praseodymium (Pr3+) substitution at Ca2+ site in calcium copper titanate, CaCu3Ti4O12 (CCTO), has been investigated. Compositions with x=0.10 and 0.20 were synthesized in the system Ca(1−3x/2)PrxCu3Ti4O12 by chemical route. Crystal structure is remained cubic. X-ray diffraction and field-emission scanning electron macrographs indicate the presence of secondary phases such as CaTiO3 and CuO. X-ray photoelectron spectroscopy suggests the substitution of Ca2+ by Pr3+/Pr4+. Low temperature admittance spectroscopy identified two deep trapping levels at 0.098 and 0.073 eV for x=0.20 and 0.078 and 0.060 eV for x=0.10. High temperature impedance spectroscopy shows that the grain boundary potential is 0.40 eV and 0.48 eV for x=0.20 and x=0.10 samples respectively. Pr3+ doping decreases dielectric loss in the bulk at low temperature but increases the dc leakage due to the lower value of grain boundary potential.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , ,