Article ID Journal Published Year Pages File Type
1462279 Ceramics International 2014 6 Pages PDF
Abstract

Nanocrystalline CoFe2−xCexO4 ferrites (x=0, 0.04, 0.08) were synthesized by using the inexpensive, simple and eco-friendly molten-salt (M-S) method. Effects of Ce doping on the structural, morphological and gas sensing properties of the CoFe2O4 ferrite were investigated. X-ray diffraction (XRD) analysis revealed the formation of spinel CoFe2O4. Transmission electron microscopy (TEM) investigations showed that the synthesized ferrite is made up of very fine spherical nanoparticles. Furthermore, the gas response of nanocrystalline ferrite materials was investigated in the temperature range of 200–450 °C toward the reducing gases like liquefied petroleum gas (LPG), acetone, ethanol and ammonia. The sensor response was found to be sensitive and selective toward acetone as compared to other reducing gases. It is observed that the addition of Ce (4 wt%) strongly influenced the response and the operating temperature of the sensor material and thus can serve as acetone-sensing sensors.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,