Article ID Journal Published Year Pages File Type
1462355 Ceramics International 2011 6 Pages PDF
Abstract

Novel fly ash cenosphere (FAC)/metakaolin (MK)-based geopolymeric composites were prepared by adding FAC to the MK-based geopolymeric slurry. Microstructure, mechanical property, thermal conductivity, and bulk density of the FAC/MK-based geopolymeric composites were investigated. It was confirmed by the scanning electron microscope (SEM) and transmission electron microscopy (TEM) that the FAC did not dissolve in alkaline condition, but element diffusion took place around the interface between geopolymeric matrix and FAC. The compressive strength, thermal conductivity and bulk density of FAC/MK-based geopolymeric composites decreased monotonically with the increase of the FAC content from 15 vol.% to 40 vol.%, and the minimum values for the 40 vol.% FAC/MK-based geopolymeric composite reached 36.5 MPa, 0.173 W m−1 K−1 and 0.82 g cm−3, respectively, in the range of FAC content from 15 vol.% to 40 vol.%. The results showed that the FAC could lower thermal conductivity effectively and bulk density of FAC/MK-based geopolymeric composites at a cost of slight decrease of mechanical properties. The 40 vol.% FAC/MK-based geopolymeric composite was a promising candidate material for intermediate-temperature thermal insulation applications due to its low thermal conductivity and low density.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,