Article ID Journal Published Year Pages File Type
1462389 Ceramics International 2012 14 Pages PDF
Abstract

This paper reports on the microstructure of anodic titanium oxide (TiO2) and its use in a dye-sensitized solar cell (DSSC) device. When voltages of 60 V were applied to titanium foil for 2 hr under 0.25 wt% NH4F+ 2 vol% H2O+C2H4(OH)2, TiO2 with a nanotube structure was formed. The film, which had a large surface area, was used as an electron transport film in the DSSC. The DSSC device had a short-circuit current density (Jsc) of 12.52 mA cm−2, a fill factor (FF) of 0.65, an open-voltage (Voc) of 0.77 V, and a photocurrent efficiency of 6.3% under 100% AM 1.5 light. The internal impedance values under 100%, 64%, 11%, and 0% (dark) AM 1.5 light intensities were measured and simulated using the electrical impedance spectroscopy (EIS) technique. The impedance characteristics of the DSSC device were simulated using inductors, resistors, and capacitors. The Ti/TiO2, TiO2/Electrolyte, electrolyte, and electrolyte/(Pt/ITO) interfaces were simulated using an RC parallel circuit, and the bulk materials, such as the Ti, ITO and conducting wire, were simulated using a series of resistors and inductors. The impedance of the bulk materials was simulated using L0+R0+Rb, the impedance of the working electrode was simulated using (C1//R1)//(Ra+(C2//R2), the electrolyte was simulated using C3//R3, and the counter electrode was simulated using C4//R4.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,