Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1462518 | Ceramics International | 2012 | 6 Pages |
Abstract
Lead-free (K0.4425Na0.52Li0.0375) (Nb0.9625âxSbxTa0.0375)O3 piezoelectric ceramics were prepared by the conventional sintering method. The effects of the Sb content on the phase structure, microstructure, dielectric, piezoelectric, and ferroelectric properties of the (K0.4425Na0.52Li0.0375) (Nb0.9625âxSbxTa0.0375)O3 ceramics were investigated. The much higher Pauling electronegativity of Sb compared with Nb makes the ceramics more covalent. By increasing x from 0.05 to 0.09, all samples exhibit a single perovskite structure with an orthorhombic phase over the whole compositional range, and the bands in the Raman scattering spectra shifted to lower frequency numbers. The grain growth of the ceramics was improved by substituting Sb5+ for Nb5+. Significantly, the (K0.4425Na0.52Li0.0375) (Nb0.8925Sb0.07Ta0.0375)O3 ceramics show the peak values of the piezoelectric coefficient (d33), electromechanical coupling coefficient (kp), and dielectric constant (É), which are 304Â pC/N, 48% and 1909, respectively, owing to the densest microstructure of typical bimodal grain size distributions. Besides, the underlying mechanism for variations of the electrical properties due to Sb5+ substitution was explained in this work.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Xuming Pang, Jinhao Qiu, Kongjun Zhu, Yang Cao,