Article ID Journal Published Year Pages File Type
1462690 Ceramics International 2012 6 Pages PDF
Abstract

Microstructural evolution of multi-walled carbon nanotubes (MWCNTs) in the presence of mixture of silicon and silica powders in a coke bed is studied in the temperature range of 1000–1500 °C by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and thermogravimetry–differential scanning calorimetry (TG–DSC). The results showed that a thin amorphous SiO2 coating was formed on the surface of MWCNTs at the temperature below 1300 °C. With the increase of the treated temperature, the coating became thicker, 3–7 nm in thickness at 1400 °C and a maximum of 10 nm at 1500 °C. Meanwhile, SiC nanowires and SiC nanocrystals around Ni catalyst at the tip of MWCNTs were formed at 1400 °C and 1500 °C, which were related to the vapor–vapor (V–V) and vapor–liquid–solid (V–L–S) reactions between SiO (g) and CO (g) or C (s), respectively. The oxidation resistance of all the treated MWCNTs was better than that of as-received ones. The oxidation peak temperature reached 804.2 °C for the treated MWCNTs, much higher than 652.2 °C for as-received ones.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,