Article ID Journal Published Year Pages File Type
1462707 Ceramics International 2012 7 Pages PDF
Abstract

Effects of 1600 °C annealing atmosphere on microstructures and mechanical properties of the C/SiC composites fabricated by PIP route were remarkable. Due to carbothermic reductions, the ratios of weight loss of the C/SiC composites were all above 7 wt% in 1 h. Consequently, the mechanical properties all had a significant drop during the first hour of annealing because of the bonding between the fibers and matrix remarkably weaken by cracks and pores. And then the flexural strengths gradually decreased with the annealing time increasing, when the flexural moduli slightly changed within the range of 44.2–49.7 GPa. However, the fracture behaviors of the C/SiC composites annealed under Ar faster became brittle than the C/SiC composites annealed under vacuum. The C/SiC composites annealed under Ar for 5 h and under vacuum for 10 h both became brittle mainly due to the sensitive to annealing of the weak carbon interphase, while the C/SiC composites annealed under Ar for 7 h became brittle mainly due to the chemical bonding between the fibers and matrix. And these phenomena were confirmed by the post densification and the stress-releasing annealing.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,