Article ID Journal Published Year Pages File Type
1462777 Ceramics International 2013 8 Pages PDF
Abstract

The fiber/matrix (F/M) interfacial shear strength (IFSS) of carbon/carbon (C/C) composites with PyC–TaC–PyC and PyC–SiC–TaC–PyC multi-interlayers was investigated. To obtain C/C composites with PyC–TaC–PyC and PyC–SiC–TaC–PyC multi-interlayers, a thin layer of PyC was deposited on carbon fibers. After this, TaC and SiC–TaC layer(s) were uniformly deposited on the PyC coated carbon fibers. As an outer-layer, a PyC layer was deposited on these TaC and/or SiC–TaC coated carbon fibers by isothermal chemical vapour infiltration (CVI) and then densified with resin carbon by impregnation and carbonization. Finally, C/C composites with PyC–TaC–PyC and PyC–SiC–TaC–PyC multi-interlayers were obtained. The effects of PyC–TaC–PyC and PyC–SiC–TaC–PyC multi-interlayers on interfacial shear strength (IFSS) of C/C composites were investigated. Single fiber push-out tests were conducted on the fibers aligned perpendicularly on the thin slices specimen surface using nano-indentation. Results showed that the IFSS of C/C composites decreased with the introduction of PyC–TaC–PyC and PyC–SiC–TaC–PyC multi-interlayers. After heat treatment (at temperatures ranging from 1400 to 2500 °C) of C/C composites with PyC–TaC–PyC multi-interlayers, it was found that the IFSS decreased with the increase in temperature. This decrease in IFSS is explained by taking into account the microstructural variations on heat treatment.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,