Article ID Journal Published Year Pages File Type
1462790 Ceramics International 2013 8 Pages PDF
Abstract

Magnetic mesoporous bioactive glasses with the composition xFe–(80−x)SiO2–15CaO–5P2O5 (mol%) (Fe/MBGs) were prepared by the non-ionic block copolymer EO20PO70EO20 (P123) surfactant as template and the evaporation-induced self-assembly process using Ca, P, Si and Fe sources. The structure, morphology and magnetic properties of Fe/MBGs were characterized by X-ray diffraction, scanning electron microscopy, infrared spectra, vibrating sample magnetometer and N2 adsorption–desorption technique. The results show that Fe/MBGs have porous network (pore diameter of 50–100 nm), mesoporous walls (mesoporous size of 4–5 nm), and that the mesostructure, magnetic properties and in vitro bioactivity of the Fe/MBGs depend on the chemical composition. Furthermore, the Fe incorporation in the MBGs enhanced the magnetic properties, demonstrated sustained drug delivery and maintained apatite-formation ability in SBF. This means that the Fe/MBGs allowed bioactivity could improve their drug delivery capacity, thus enhancing their potential applications as bioactive filler materials for bone tissue regeneration.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,