Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1462814 | Ceramics International | 2013 | 8 Pages |
Carbon/carbon (C/C) composites with addition of hafnium carbide (HfC) were prepared by immersing the carbon felt in a hafnium oxychloride aqueous solution, followed by densification and graphitization. Mechanical properties, coefficients of thermal expansion (CTE), and thermal conductivity of the composites were investigated. Results show that mechanical properties of the composites decrease dramatically when the HfC content is greater than 6.5 wt%. CTE of the composites increases with the increase of HfC contents. The composites with addition of 6.5 wt% HfC show the highest thermal conductivity. The high thermal conductivity results from the thermal motion of CO in the gaps and pores, which can improve phonon–defect interaction of the C/C composites. Thermal conductivities of the composites decrease when the HfC content is greater than 6.5 wt%, which is due to formation of a large number of cracks in the composites. Cracks increase the phonon scattering and hence restrain heat transport, which results in the decrease of thermal conductivity of the composites.