Article ID Journal Published Year Pages File Type
1463252 Ceramics International 2011 11 Pages PDF
Abstract

Nickel and zinc substituted strontium hexaferrite, SrFe11Zn0.5Ni0.5O19 (SrFe12O19/NiFe2O4/ZnFe2O4) nanoparticles having super paramagnetic nature are synthesized by co-precipitation of chloride salts using 7.5 M sodium hydroxide solution. The resulting precursors are heat treated (HT) at 900 and 1200 °C for 4 h in nitrogen atmosphere. During heat treatment, transformation proceeds as a constant rate of nucleation and three dimensional growth with an activation energy of 176.79 kJ/mol. The hysteresis loops show an increase in saturation magnetization from 1.042 to 59.789 emu/g with increasing HT temperatures. The ‘as-synthesized’ particles with spherical and needle shapes have size in the range of 20–25 nm. Further, these spherical and needle shaped nanoparticles tend to change their morphology to hexagonal plate and pyramidal shapes with increase in HT temperatures. The effect of such a systematic morphological transformation of nanoparticles on dielectric (complex permittivity and permeability) and microwave absorption properties are estimated in X band (8.2–12.2 GHz). The maximum reflection loss of the composite reaches −29.62 dB (99% power attenuation) at 10.21 GHz which suits its application in RADAR absorbing materials.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,