Article ID Journal Published Year Pages File Type
1463405 Ceramics International 2010 10 Pages PDF
Abstract

Fluorine-substituted hydroxyapatites are considered promising materials for bone scaffolding. In this study a systematic investigation on F-half substituted hydroxyapatite (F-HAp, Ca10(PO4)6OHF) obtained by precipitation is reported. Results on composition analysis, thermal behaviour, and sinterability are presented for a comparison with the respective pure hydroxyapatite. Samples were characterised by electron microscopy, induced coupled plasma-atomic emission spectroscopy, thermal analysis, infrared spectroscopy, N2 adsorption measurements, X-ray diffraction and dilatometry. A semicrystalline F-substituted hydroxyapatite powder made up of needle-like nanoparticles was obtained. Notwithstanding that it was thermally stable up to 1300 °C, it was sintered at relatively low temperatures obtaining a very fine microstructure with a relevant nano-porosity, beneficial in view of cell adhesion and in-growth.Hardness, elastic modulus and toughness of produced samples were investigated by Vickers–Knoop microhardness testing. Significant improvements of the mechanical properties were observed for the F-substituted hydroxyapatite, in comparison with pure hydroxyapatite.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,