Article ID Journal Published Year Pages File Type
1463666 Ceramics International 2009 6 Pages PDF
Abstract

This work is devoted to the kinetic study of densification and grain growth of LaPO4 ceramics. By sintering at a temperature close to 1500 °C, densification rate can reach up to 98% of the theoretical density and grain growth can be controlled in the range 0.6–4 μm. Isothermal shrinkage measurements carried out by dilatometry revealed that densification occurs by lattice diffusion from the grain boundary to the neck. The activation energy for densification (ED) is evaluated as 480 ± 4 kJ mol−1. Grain growth is governed by lattice diffusion controlled pore drag and the activation energy (EG) is found to be 603 ± 2 kJ mol−1. The pore mobility is so low that grain growth only occurs for almost fully dense materials.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,