Article ID Journal Published Year Pages File Type
1463672 Ceramics International 2009 7 Pages PDF
Abstract

MgTa2O6 powders were prepared by mechanochemical synthesis from MgO and Ta2O5 in a planetary ball mill in air atmosphere using steel vial and steel balls. High-energy ball milling gave nearly single-phase MgTa2O6 after 8 h of milling time. Annealing of high-energy milled powder at various temperatures (700–1200 °C) indicated that high-energy milling speed up the formation and crystallization of MgTa2O6 from the amorphous mixture. The powder derived from 8 h of mechanical activation gave a particle size of around 28 nm. Although at low-annealing temperatures the grain size was almost the same as-milled powder, the grain size increased with annealing temperature reaching to around 1–2 μm after annealing at 1200 °C for 8 h.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
,