Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1463924 | Ceramics International | 2010 | 6 Pages |
Abstract
In this paper, TiO2 was introduced into boron carbide and B4C-based ceramic composites were obtained by uniaxial hot pressing. The mechanical properties, relative density and erosion behaviour of B4C-based ceramic composites were investigated. X-ray analysis showed that the fabricated composites were composed of B4C, TiB2 and C phases. SEM technique was employed to observe the original polished surfaces and the eroded surfaces of B4C-based ceramic composites. The effect of impingement angle, impact velocity of SiC erodent particle, relative density and phase ratio on the erosion rate of B4C-based ceramic composites was determined. It was found that the erosion rate of B4C-based ceramic composites increased with increasing of impingement angle and erodent particle velocity. The relative density and phase ratio influenced the erosion rate of B4C-based ceramic composites significantly by influencing their mechanical properties.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Changxia Liu, Junlong Sun,