Article ID Journal Published Year Pages File Type
1464412 Ceramics International 2009 9 Pages PDF
Abstract

Tricalcium phosphate and synthesized fluorapatite powder were mixed in order to elaborate biphasic ceramics composites. The effect of fluorapatite addition on the densification and the mechanical properties of tricalcium phosphate were measured with the change in composition and microstructure of the bioceramic. The Brazilian test was used to measure the mechanical resistance of the tricalcium phosphate–26.52 wt% fluorapatite composites. The densification and rupture strength increase versus sintering temperature. The composites have a good sinterability and rupture strength in temperature ranging between 1300 and 1400 °C. Thus, the densification ultimate was obtained at 1350 °C and the mechanical resistance optimum reached 9.6 MPa at 1400 °C. Above 1400 °C, the densification and the mechanical properties were hindered by the allotropic transformation of tricalcium phosphate, grain growth and the formation of both intragranular porosity and many cracks. The 31P magic angle spinning nuclear magnetic resonance analysis of composites reveals the presence of tetrahedral P sites.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,