Article ID Journal Published Year Pages File Type
1465207 Ceramics International 2009 9 Pages PDF
Abstract

Three-dimensional carbon fiber-reinforced SiC matrix composites (Cf/SiC) were fabricated by vapor silicon infiltration (VSI) successfully. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and wavelength dispersive spectrometer (WDS) analysis revealed that the microstructure and composition of constituent phases are strongly dependent on temperature. At 1973 K, the obtained Cf/SiC composite mainly consists of SiC, carbon fiber and residual Si, and shows a densified microstructure. The flexural tests show non-catastrophic fracture behavior for composites fabricated by VSI process, and the ultimate flexural stress is comparable to those of composites fabricated by other processing techniques, demonstrating VSI is an effective way to fabricate the dense Cf/SiC composites with good mechanical properties.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,