Article ID Journal Published Year Pages File Type
1465807 Composites Part A: Applied Science and Manufacturing 2016 13 Pages PDF
Abstract

Experimental investigations were conducted to characterize the fracture behaviours of Bisphenol A diglycidyl ether (DGEBA) epoxies modified with rigid nanoparticles (nanosilica or halloysite) and a reactive liquid carboxylterminated butadiene–acrylonitrile (CTBN) liquid rubber to identify toughening mechanisms and toughenability in the cured epoxies with different cross-linking densities. The epoxy was cured using three different hardeners, a heterocyclic amine (piperidine), a cycloaliphatic polyamine (Aradur 2954) and an aromatic amine [4,4′-Diaminodiphenyl sulfone (DDS)] to form nanocomposites with different cross-linking densities. It was found that both the hybrid particles, nanosilica with CTBN rubber and halloysite with CTBN rubber, were effective additives that clearly increased the fracture toughness of the three epoxy composites. In particular, the use of halloysite nanoparticles as additives for the epoxies showed greater potential than nanosilica to increase strength and modulus due to the reinforcing effect of the halloysite nanotubes (HNTs). The epoxy systems cured with the hardeners (Aradur 2954 and DDS), which generated relatively high cross-linking densities, evidenced inferior toughenability of the hybrid particles, compared with the epoxy systems cured using the hardener (piperidine), which produced lower cross-linking densities. The CTBN rubber formed dissimilar domains in different epoxy systems, features which were attributed to the different toughenability of the hybrid particles in the systems due to variations in the dominant toughening mechanisms involved.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,