Article ID Journal Published Year Pages File Type
1465847 Composites Part A: Applied Science and Manufacturing 2015 9 Pages PDF
Abstract

The effects of temperature on the bending properties and failure mechanism of carbon fiber reinforced polymer composite sandwich structure with pyramidal truss cores were investigated and presented in this paper. The three-point bending tests of composite sandwich structures were performed at seven different temperatures, and the scanning electron microscope was used to examine the fiber-matrix interface properties in order to understand the deformation and failure mechanism. Then the effects of temperature on deformation modes, failure mechanism and bending failure load were studied and analyzed. The results showed that the temperature has visible impact on the deformation modes, failure mechanism, and bending failure load. The bending failure load decreased as temperature increased, which was caused by the degradation of the matrix properties and fiber-matrix interface properties at high temperature. The analytical formulae were also presented to predict the bending stiffness and failure load of composite sandwich structures at different temperatures.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,