Article ID Journal Published Year Pages File Type
1465933 Composites Part A: Applied Science and Manufacturing 2015 10 Pages PDF
Abstract

Microwave heating has several major advantages over conventional conductive heating when used to cure carbon–epoxy composites, especially in speed of processing. Despite this and many other well-known advantages, microwave heating of carbon–epoxy composites has not taken off in industry, or even academia, due to the problems associated with microwave energy distribution, arcing, tool design and (ultimately) part quality and consistency, thus leading to a large scepticism regarding the technique/technology for heating such type of materials. This paper presents some evidence which suggests that with the correct hardware and operating procedure/methodology, consistent and high quality carbon–epoxy laminates can be produced, with the possibility of scaling up the process, as demonstrated by the micro- and macro-scale mechanical test results. Additionally, the author proposes a methodology to practically measure the maximum microwave penetration depth of a carbon–epoxy composite material.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,