Article ID Journal Published Year Pages File Type
1465966 Composites Part A: Applied Science and Manufacturing 2014 10 Pages PDF
Abstract

Three silane coupling agents with amino, long alkyl chain or vinyl functional groups were used to modify magnesia (MgO) nanoparticles. The modified nanoparticles were then mechanically mixed with low-density polyethylene (LDPE) to fabricate insulating nanocomposites. The average size of the modified MgO aggregates dispersed in LDPE matrix was below 100 nm. The pulsed electroacoustic method indicated that the MgO nanoparticles regardless of surface modification were effective to suppress the packet-like charge injection and accumulation in the LDPE sample, decrease the permittivity and tan δ, and also improved the direct-current breakdown strength of LDPE at different temperatures. The best insulating properties were found in the case of vinyl-silane-modified-MgO/LDPE samples probably owing to the improved interfacial adhesion. A multi-core model was used to discuss the results obtained.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,