Article ID Journal Published Year Pages File Type
1466072 Composites Part A: Applied Science and Manufacturing 2014 11 Pages PDF
Abstract

For a 3D orthogonal carbon fibre weave, geometrical parameters characterising the unit cell were quantified using micro-Computed Tomography and image analysis. Novel procedures for generation of unit cell models, reflecting systematic local variations in yarn paths and yarn cross-sections, and discretisation into voxels for numerical analysis were implemented in TexGen. Resin flow during reinforcement impregnation was simulated using Computational Fluid Dynamics to predict the in-plane permeability. With increasing degree of local refinement of the geometrical models, agreement of the predicted permeabilities with experimental data improved significantly. A significant effect of the binder configuration at the fabric surfaces on the permeability was observed. In-plane tensile properties of composites predicted using mechanical finite element analysis showed good quantitative agreement with experimental results. Accurate modelling of the fabric surface layers predicted a reduction of the composite strength, particularly in the direction of yarns with crimp caused by compression at binder cross-over points.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,