Article ID Journal Published Year Pages File Type
1466387 Composites Part A: Applied Science and Manufacturing 2012 8 Pages PDF
Abstract

The microstructure of flax fibres can be considered as a laminate with layers reinforced by cellulose fibrils. During a single fibre tensile test the S2 layer is subjected to shear. At room temperature, natural fibres contain water absorbed in the cell-walls. This paper examines the influence of this water at two scales: on the tensile behaviour of the flax fibres and on unidirectional plies of flax reinforced epoxy. Drying (24 h at 105 °C) is shown to reduce both failure stress and failure strain significantly. Analysis of normal stresses at the accomodation threshold provides an estimation of the shear strength of secondary cell walls as 45 MPa for fibres containing 6.4% by weight of water and only 9 MPa for dried fibres. Results from tensile tests on unidirectional flax/epoxy composites, reinforced by as-received and dried fibres, confirm the influence of drying on strength properties.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,