Article ID Journal Published Year Pages File Type
1466401 Composites Part A: Applied Science and Manufacturing 2012 8 Pages PDF
Abstract

Carbon nanofibers (CNFs) were functionalized with 3-glycidoxypropyltrimethoxysilane and dispersed into epoxy resin. The chemical modification of CNFs was confirmed by FTIR, SEM, EDX and TGA measurements. After silanization, FTIR showed the existance of epoxy ring; EDX detected Si element; while TGA indicated 1.1 wt.% Si on CNFs. Mechanical properties were analyzed by DMA. Silanized CNFs/epoxy composites demonstrated improved dispersion of CNFs in the matrix, and an enhancement of storage modulus for about 20% compared to the neat matrix, which indicated that the modification of CNFs improved the adhesion between fillers and matrices. DC electrical conductivity of CNFs was reduced about 7-fold compared to the original CNFs due to the silane coating. Accordingly, the composites containing silanized CNFs also had lower electrical conductivity than those containing original CNFs. In spite of decreased electrical conductivity, thermal conductivity of silanized CNFs/epoxy composites was increased due to the surface modification of CNFs.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,