Article ID Journal Published Year Pages File Type
1466422 Composites Part A: Applied Science and Manufacturing 2013 15 Pages PDF
Abstract

The low velocity impact behavior of E-glass/basalt reinforced hybrid laminates, manufactured by resin transfer moulding technique, was investigated. Specimens prepared with different stacking sequences were tested at three different impact energies, namely 5 J, 12.5 J and 25 J. Residual post-impact mechanical properties of the different configurations were characterized by quasi static four point bending tests. Post-impact flexural tests have been also monitored using acoustic emission in order to get further information on failure mechanisms. Results showed that basalt and hybrid laminates with an intercalated configuration exhibited higher impact energy absorption capacity than glass laminates, and enhanced damage tolerance capability. Conversely, the most favorable flexural behavior was shown by laminates with symmetrical sandwich-like configuration (E-glass fiber fabrics as core and basalt fiber fabrics as skins).

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , ,