Article ID Journal Published Year Pages File Type
1466524 Composites Part A: Applied Science and Manufacturing 2012 7 Pages PDF
Abstract

The purpose of this study is to evaluate effects of stacking thickness on the microscopic damage behavior in a filament wound carbon fiber reinforced plastics (FW-CFRPs) composite cylinder subjected to impact or quasi-static out-of-plane loading. From both tests, thicker CFRP improved the stiffness of the cylinder and decreased the resultant plastic deformation due to indentation. From the cross-sectional observation, it is clarified that fiber breakages were localized for the specimens with impact tests more than 10-layers and specimens with quasi-static tests more than 15-layers. In order to discuss the relation between the damage and the absorbed energy, damage depth ratio was defined as fiber damage depth per unit CFRP thickness. To normalize the effect of thickness, absorbed energy ratio was also defined as absorbed energy per unit CFRP thickness. Absorbed energy ratio as a function of absorbed energy ratio was expressed as one master curve regardless of loading conditions.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,