Article ID Journal Published Year Pages File Type
1466571 Composites Part A: Applied Science and Manufacturing 2012 13 Pages PDF
Abstract

The aim of this paper is to investigate the origin of the diameter-dependence of Young’s modulus in hemp fibres. In view of the considerable experimental difficulties encountered when determining the 3D morphology of elementary fibres, the influence of the fibre morphology and size on the E-modulus is studied using a mathematical model. An approach based on the 3D elastic theory is used to construct a model of the fibre structure, and to predict its mechanical properties. We clearly show that the modulus is dependent on the size of the lumen and on the outer fibre diameter. This structural effect, induced by the cylindrical geometry, the multi-layered organisation, and the orientation of the cellulose microfibrils only partly explains the large, experimentally determined dispersion of apparent E-modulus, as a function of fibre diameter. Ultrastructural parameters, such as cellulose crystallinity and microfibril angles, are identified to be the main factors involved in this dependence.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,