Article ID Journal Published Year Pages File Type
1466922 Composites Part A: Applied Science and Manufacturing 2011 10 Pages PDF
Abstract

A fatigue model developed for composite laminates and based on the cycle-by-cycle probability of failure has been modified to account for damage creation and evolution and its effect on cycles to failure. The residual strength of different parts of the laminate is determined during cyclic loading and damage such as matrix cracking is quantified along with its effect on load redistribution and cycles to failure of different parts of the laminate. The model does not require any curve fitting or experimentally measured data other than basic material static strength values and their associated experimental scatter. The model is applied to uni-directional and cross-ply laminates. A stress-based approach using energy minimization and calculus of variations is used. The model predictions range from fair to excellent.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,