Article ID Journal Published Year Pages File Type
1466945 Composites Part A: Applied Science and Manufacturing 2010 6 Pages PDF
Abstract

In the present work, sensing functionalities are introduced into structural composites via embedded magnetic microwires. A systematic study on the structure and functionalities of microwires and their composites is performed. The single-wire composite shows a significant giant magnetoimpedance (GMI) effect of up to 320% in a frequency range of 1–100 MHz due to stress enhanced transverse magneto-anisotropy. With increasing quantities of embedded wires from 1 to 3, the maximum GMI ratio is enhanced significantly by more than 35%, making the resultant composite favourable for field sensing applications. The microwire-composite also shows superior stress-sensing resolution as high as 134.5 kHz/microstrain, which is about 26 times higher than the recently proposed SRR-based sensor. As evidenced by the structural examination and tensile tests, the extremely small volume fraction of microwires (∼0.01 vol.%) allows the wire-composites to retain their mechanical integrity and performance.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,