Article ID Journal Published Year Pages File Type
1466956 Composites Part A: Applied Science and Manufacturing 2010 20 Pages PDF
Abstract

A comparison of substantial published data for 3D woven, stitched and pinned composites quantifies the advantages and disadvantages of these different types of through-thickness reinforcement for in-plane mechanical properties. Stitching or 3D weaving can either improve or degrade the tension, compression, flexure and interlaminar shear properties, usually by less than 20%. Furthermore, the property changes are not strongly influenced by the volume content or diameter of the through-thickness reinforcement for these two processes. One implication of this result is that high levels of through-thickness reinforcement can be incorporated where needed to achieve high impact damage resistance. In contrast, pinning always degrades in-plane properties and fatigue performance, to a degree that increases monotonically with the volume content and diameter of the pins. Property trends are interpreted where possible in terms of known failure mechanisms and expectations from modelling. Some major gaps in data and mechanistic understanding are identified, with specific suggestions for new standards for recording data and new types of experiments.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,