Article ID Journal Published Year Pages File Type
1466986 Composites Part A: Applied Science and Manufacturing 2010 10 Pages PDF
Abstract

Electro-micromechanical techniques, wettability test, and acoustic emission (AE) were use to compare self-sensing and stress-transferring effects in single carbon fiber embedded in carbon nanofiber (CNF)–epoxy composites with two different aspect ratios. Electrical resistivity and standard deviation were used as indirect measures of comparative dispersion degree of CNF. The dispersion was observed to decrease with increasing CNF content due to an increase in the electrical contacts. Composites with higher aspect ratio exhibited better self-sensing than lower aspect ratio case. This was attributed to differences in dispersion, orientation, coagulation of CNF with different aspect ratios. The opposite effect was observed for apparent Young’s modulus, which was larger for composites with lower aspect ratio. This is probably related to better stress transfer linked to orientation effects. Work of adhesion consistently followed same trend as apparent Young’s modulus. Single carbon fiber pull-out tests and AE provided additional information on the effects of aspect ratio.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,