Article ID Journal Published Year Pages File Type
1467050 Composites Part A: Applied Science and Manufacturing 2010 8 Pages PDF
Abstract

Carbon nanotube (CNT) sheets, also known as buckypaper, have high potential for structural applications due to their high volume fraction of CNT, the strongest and stiffest materials known. In this work, two different techniques, one based on positive pressure and another based on vacuum infiltration, are utilized to impregnate single-walled carbon nanotube (SWCNT) buckypaper sheets of 50–70 μm in thickness, resulting in a Young’s modulus of up to 15.4 GPa. Scanning electron microscopy demonstrates that the vacuum-based technique results in more effective impregnation of the buckypaper than the positive pressure technique. Thermogravimetry analysis of vacuum-impregnated specimens indicated a void content ranging from 5% to 32%. An advanced Mori–Tanaka-based micromechanics technique is also utilized to predict the effect of SWCNT volume fraction and void content on Young’s modulus of nanocomposites. These calculations suggest a higher void content of around 40% for the vacuum-impregnated composites.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,