| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 1467074 | Composites Part A: Applied Science and Manufacturing | 2010 | 7 Pages |
The impregnation stage of the Resin Transfer Moulding process can be simulated by solving the Darcy equations on a mould model, with a ‘macro-scale’ finite element method. For every element, a local ‘meso-scale’ permeability must be determined, taking into account the local deformation of the textile reinforcement. This paper demonstrates that the meso-scale permeability can be computed efficiently and accurately by using meso-scale simulation tools. We discuss the speed and accuracy requirements dictated by the macro-scale simulations. We show that these requirements can be achieved for two meso-scale simulators, coupled with a geometrical textile reinforcement modeller. The first solver is based on a finite difference discretisation of the Stokes equations, the second uses an approximate model, based on a 2D simulation of the flow.
