Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1467150 | Composites Part A: Applied Science and Manufacturing | 2010 | 6 Pages |
A parametric study on the process-induced deformation of composite stiffener structures is presented in this paper. The deformation was calculated numerically by Finite element analysis (FEA). The results suggest that the overall deformation of the structure can be characterized by the spring-in of the skin. Based on FEA, a parametric study and sensitivity analysis was conducted, from which it is shown that: (1) the spring-in decreases with the fiber volume fraction; (2) the spring-in linearly increases with the radius–thickness ratio; (3) the spring-in vs. the bonding length is a power increasing function; (4) the spring-in is most sensitive to the laminate fiber volume fraction, followed by the radius–thickness ratio and the bond length, and least sensitive to the noodle fiber volume fraction; and (5) at higher fiber volume fractions, the spring-in is more sensitive to the fiber volume fraction.