Article ID Journal Published Year Pages File Type
1467164 Composites Part A: Applied Science and Manufacturing 2010 8 Pages PDF
Abstract

A computationally-efficient numerical approach to treating matrix nonlinearity in ceramic matrix composite components has been developed and validated. The model employs a dual mesh comprising strings of line elements that represent the fiber tows and 3D effective medium elements that define the external geometry and embody the matrix-dominated properties. Validation addressed test data for unnotched and open-hole tension specimens. For these tests, the onset of nonlinearity and subsequent plasticity due to matrix microcracking and interfacial debonding and sliding are satisfactorily represented by a linear Drucker–Prager model for failure initiation in the effective medium along with a fully-associated flow rule with isotropic, perfectly-plastic flow. Composite failure is assumed to be correlated with the maximum local stress averaged over a gauge volume dictated by the fiber tow width. Using one set of specimens for calibration, very good predictions of the nonlinear stress–strain response and ultimate strength of other specimens are obtained.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , ,