Article ID Journal Published Year Pages File Type
1467260 Composites Part A: Applied Science and Manufacturing 2009 6 Pages PDF
Abstract

A test method to measure cellulose fibril elastic modulus using atomic force microscopy was used to investigate the effects of process and source on the moduli of single cellulose fibrils. The cellulose fibrils were generated from cellulose by mechanical treatments. Individual fibrils were suspended over a micro scale groove etched on a silicon wafer. A nano-scale three-point bending test was performed to obtain the elastic moduli. The results indicated that the elastic moduli of cellulose fibrils were not significantly different between 30 min and 60 min of high intensity ultrasonic treatment for Lyocell fiber, between isolation methods of ultrasonic and homogenizer treatment for pure cellulose fiber, and between different cellulose sources of pulp fibers treated by homogenizer regardless the effects of sample size coupled with inherent variation in the raw material. The elastic modulus of Lyocell fibrils with diameters from 150 to 180 nm was evaluated to be 98 ± 6 GPa. Modulus values decreased dramatically when the diameter was more than 180 nm.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,