Article ID Journal Published Year Pages File Type
1467277 Composites Part A: Applied Science and Manufacturing 2009 8 Pages PDF
Abstract

All-cellulose composites of Lyocell and high modulus/strength cellulose fibres were successfully prepared using a surface selective dissolution method. The effect of immersion time of the fibres in the solvent during composite’s preparation and the effect of the starting fibre’s structure on their properties were investigated. Scanning electron microscopy, X-ray diffraction, dynamic mechanical analysis, and tensile testing were used to assess the structure and properties of the composites. These all-cellulose composites of regenerated cellulose fibres demonstrate a promising route to biocomposites with excellent mechanical and thermal properties which can also be tuned depending upon a selection of fibres and preparation parameters.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,