Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1467391 | Composites Part A: Applied Science and Manufacturing | 2009 | 21 Pages |
The progressive damage behaviors of hybrid woven composite panels (101.6 mm × 101.6 mm) impacted by drop-weights at four different velocities were studied by a combined experimental and 3-D dynamic nonlinear finite element approach. The specimens tested were made of plain-weave hybrid S2 glass-IM7 graphite fibers/toughened epoxy (cured at 177 °C). The composite panels were damaged using a pressure-assisted Instron-Dynatup 8520 instrumented drop-weight impact tester. During these low-velocity simpact tests, the time-histories of impact-induced dynamic strains and impact forces were recorded. The damaged specimens were inspected visually and using ultrasonic C-Scan methods. The commercially available 3-D dynamic nonlinear finite element (FE) software, LS-DYNA, incorporated with a proposed user-defined damage-induced nonlinear orthotropic model, was then used to simulate the experimental results of drop-weight tests. Good agreement between experimental and FE results has been achieved when comparing dynamic force, strain histories and damage patterns from experimental measurements and FE simulations.