Article ID Journal Published Year Pages File Type
1467393 Composites Part A: Applied Science and Manufacturing 2009 15 Pages PDF
Abstract
Mould tools used for LCM processes such as Resin Transfer Moulding (RTM) and Injection/Compression Moulding (I/CM) must withstand local forces due to compaction of the fibre reinforcement, and due to resin pressure generated within the laminate. A series of RTM and I/CM experiments have been carried out, with the focus placed on measurement of normal stress distributions exerted on the mould surface. In addition, total mould clamping force and injection gate pressure histories have been recorded. I/CM experiments using force-controlled secondary compaction were also undertaken, and compared to the velocity-controlled cases. Observed fluid pressure fields showed good agreement with theory, namely a logarithmic distribution during fluid injection and a quadratic distribution during the compression driven filling phase of I/CM. Significant spatial variation in normal stress due to reinforcement compaction was observed. The influence of the fluid pressure on the total stress experienced by the mould was observed to be a function of both the fibre volume fraction of the part and the applied injection pressure, the latter being more pronounced at lower part volume fractions.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,