Article ID Journal Published Year Pages File Type
1467513 Composites Part A: Applied Science and Manufacturing 2007 21 Pages PDF
Abstract
The dual-scale nature of fiber preforms due to the presence of large continuous gaps between fiber tows gives rise to the unsaturated flow in resin transfer molding (RTM) process which is characterized by a droop in the injection pressure history due to the delayed absorption of fiber tows (the 'sink' effect). In this study, we experimentally investigate the effect of change in flow direction on the unsaturated flow in three anisotropic dual-scale fiber mats. A series of 1-D mold-filling experiments involving a constant flow rate were conducted for a unidirectional woven fiber-mat, a biaxial stitched mat, and a triaxial stitched fiber-mat along with a reference single-scale random mat. In the case of the unidirectional mats, the droop in the inlet-pressure history, signifying the strength of the sink effect, is found to be strongest for flow along the micro-channels aligned with fiber tows. The droop, and hence the sink effect, is observed to weaken progressively for flow-directions at 45° and 90° to this principal direction. In the case of the biaxial and triaxial mats, the situation is more complex due to the multi-layer construction of such mats: maximum droop is found when mats are oriented at a 45° angle with respect to the fiber-mat coordinate, and it weakens in the 0° and 90° directions. The unsaturated flow effect is also quantified by measuring percentage deviation in the area under the experimental curve from that of the predicted curve. A clear correlation between the droop (through the percentage deviation) and the permeability along a flow direction in the unidirectional mats is observable, though such a relationship eludes the triaxial mat. The effect of unsaturated flow on liquid-front progress during the 1-D experiment was also studied. In contrast to the reference single-scale random mat where the observed front progress closely follow the prediction based on the single-scale physics, a small difference was observed between the observed and predicted front progress for the three dual-scale mats considered. However the difference was too small to yield any significant correlation with the flow direction.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,