Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1467747 | Composites Part A: Applied Science and Manufacturing | 2008 | 9 Pages |
Process-induced residual stress arises in polymer composites as a result of mismatched resin contraction and fiber contraction during the cure stage. When a curved shell-like composite part is de-molded, the residual stress causes the spring-in phenomenon, in which the enclosed angle of the part becomes smaller than the angle of its mold. In this paper, a new approach is presented to control and reduce the spring-in angle by infusing a small amount of carbon nanofibers (CNFs) together with liquid resin into the glass fiber preform using vacuum assisted resin transfer molding (VARTM) process. The experimental results showed that the spring-in angles of the L-shaped composite specimens were effectively restrained by the CNFs. An analytical model and a 3-D FEA model were developed to predict the spring-in phenomenon and to understand the role of CNFs in reducing the spring-in angle. The models agreed with the experimental results reasonably well. Furthermore, the analytical model explains how the CNF-enhanced dimensional tolerance control is accomplished through the reductions in the matrix’s equivalent coefficient of thermal expansion and linear crosslinking shrinkage.